The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

Authors

  • A. Shahrezaee Department of Mathematics‎, ‎Alzahra University‎, ‎Vanak‎, ‎Post Code 19834‎, ‎Tehran‎, ‎Iran.
  • F. ‎Parzlivand Department of Mathematics‎, ‎Alzahra University‎, ‎Vanak‎, ‎Post Code 19834‎, ‎Tehran‎, ‎Iran.
Abstract:

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadratic‎ ‎radial basis functions (IQ-RBFs)‎. ‎The operational matrix of‎ ‎derivative for IQ-RBFs is introduced and the new computational‎ ‎technique is used for this purpose‎. ‎The operational matrix of‎ ‎derivative is utilized to reduce the problem to a set of algebraic‎ ‎equations‎. ‎Some examples are given to demonstrate the validity and‎ ‎applicability of the new method and a comparison is made with the‎ ‎existing results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎in this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎the method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

full text

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Determination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions

In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...

full text

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Radial basis functions method for parabolic inverse problem

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...

full text

a numerical solution for an inverse heat conduction problem

in this paper, we demonstrate the existence and uniqueness a semianalytical solution of an inverse heat conduction problem (ihcp) in the form: ut = uxx in the domain d = {(x, t)| 0 < x < 1, 0 < t t}, u(x, t) = f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 t t. some numerical experiments are given in the final section.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 5

pages  1127- 1142

publication date 2016-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023